
Journal of Computational Physics167,22–38 (2001)

doi:10.1006/jcph.2000.6653, available online at http://www.idealibrary.com on

Application of Vector Calculus to Numerical
Simulation of Continuum Mechanics Problems

Nicholas M. Bessonov∗ and Dong Joo Song†
∗Institute of the Problems of Mechanical Engineering, Academy of Science of Russia, Bolshoj Pr. 61,

St. Petersburg 199178, Russia;†School of Mechanical Engineering, Yeungnam University,
Gyongsan, 712-160, Korea

E-mail: bessonov@bess.ipme.ru, djsong@yu.ac.kr

Received March 22, 2000; revised October 5, 2000

It is well known that vector–tensor notation is a compact and natural language
for the mathematical formulation of continuum mechanics problems. Here we de-
scribe the application of vector technique to numerical simulation starting with a
mathematical formulation. We provide an efficient numerical scheme and furnish
an implementation as a computer program. As a result (in comparison with tradi-
tional “component” form), the two last steps are significantly simplified, especially
for multidimensional problems with various boundary conditions in irregular geo-
metries where nonorthogonal meshes are applied. Therefore, more attention can be
focused on the physical nature of problems. Apart from the cleaner syntax, vec-
tor notation conserves the structure of traditional numerical algorithms and solves
multidimensional problems with minimum additional programming effort. Complex
practical applications of this technique are described as well.c© 2001 Academic Press

Key Words:numerical simulation; continuum mechanics; vector–tensor calculus;
finite difference; finite volume; finite element; object-oriented programming.

1. INTRODUCTION

We describe here a concise illustration of application of vector techniques to numeri-
cal simulation of several continuum mechanics problems from mathematical formulation
(Section 1) through numerical scheme (Sections 2–4). We also describe a computer pro-
gram based on vector–tensor types of variables, which can be developed with the help of
object-oriented languages (Section 5). The uniform (“vector”) point of view on all three
steps allows one to simplify the process of simulation significantly, especially for multidi-
mensional problems in irregular geometries.

We would like to illustrate with the help of a similar situation. Let us deal with problems
from the area of algebra of complex numbers. If one uses a programming language without

22

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press
All rights of reproduction in any form reserved.



APPLICATION OF VECTOR ANALYSIS 23

complex type variables (BASIC, for example), one has to prepare all formulas for real and
imaginary components explicitly (i.e., in “component” form). On the other hand, when one
uses programming language with an intrinsic type of complex variable (such as Fortran77),
final formulas can be conserved in natural and compact “complex” form. Obviously both
cases are equivalent from a mathematical point of view, but in the latter case, the user can
significantly simplify final formulas and the program.

Vector–tensor notation is a natural language for continuum mechanics problems. Obvi-
ously when formulas for computer simulation are developed, it is important to prepare an
“interface” of final formulas in a form that corresponds best to the programming language
that will be used in the future. Unfortunately, Fortran77 (the basic language for professional
numerical simulation) does not have the intrinsic type of vector (tensor) variables; there-
fore, a discrete analog of vector analysis must be prepared in “component” form for any
component explicitly. In general, the case of multidimensional mechanics problems with
vector or tensor variables and irregular geometries where nonorthogonal meshes render the
computer programming has become increasingly complex.

Object-oriented languages such as C++ or Fortran90 (dated from 1980 and 1990 respec-
tively) allow the development of new data types or new classes (for vector-tensor variables
in our case), which encapsulate all features of these data types. The variables of this type can
be as easily applied as variables of intrinsic types (for example, complex types in Fortran77).
In other words, one does not have to develop subroutines for computing volumes and areas
and so on, but one must develop and work with new data types (new classes) for vector
(tensor) objects with overloaded operations such as dot, cross, and diadic (see sample in
Section 5.2). Obviously, once a coordinate System is chosen, one must always be concerned
about components, at least in non-Cartesian coordinate systems. New classes allow encap-
sulation of the features. The implementation of this technique allows a significant reduction
in the amount of work.

The general system of continuum mechanics equations (conservation laws of mass, mo-
mentum, and energy) can be written as

dρ

dt
= −ρ∇ · v

d

dt

∫
V

ρv dV =
∮
S

(ds · T) (1)

d

dt

∫
V

ρE dV =
∮
S

v · (ds · T),

wheret is time, v is velocity,ρ is density,T is the stress tensor,E is energy,V is the
Lagrangian volume of space enclosed by surfaceS, differential area vectords= n dS, and
n is an outward normal vector atS.

The mathematical formulation of the problem (governing equations) includes system
(Eq. (1)) and constitutive relationships. For example, they are

T = −pI + h1B+ h2B · B (2)

for a hyperelastic solid [1] or

T = −pI + µ(∇v+ v∇) (3)



24 BESSONOV AND SONG

for a Newtonian incompressible fluid. Herep is pressure;µ is viscosity; I is the unit
tensor;B = F · FT is the left Cauchy–Green tensor;F = r∇0; ∇ = ∂/∂r (for rectangular
coordinates (x1, x2, x3) or (x, y, z); ∇ = im∂/∂xm, wherei1, i2, andi3 are basis vectors);
∇0 = ∂/∂r0; r is the time-dependent Lagrangian position vector;r0 = r |t=0; andh1 andh2

are material properties that are functions of the invariantsB. The summation convention
over dummy (repeated) subscripts is inferred over the dimensions of the problem;a · b,
a× b, andab are dot, cross, and dyadic products for vectorsa andb, respectively, and
a∇ ≡ (∇a)T .

Most of the difficulties in modern computational mechanics are caused during the study
of 2D/3D problems with complex shapes and nonlinear rheological models.

Methods of creating a discrete analog of vector analysis on nonorthogonal meshes were
developed starting around 1950 and are still evolving. A series of papers creating a discrete
analog of vector analysis on nonorthogonal grids was developed by Shashkov, Hyman,
Steinberg and others.

Different variants of natural discrete analogs of the divergence, gradient, and curl opera-
tors based on coordinate-invariant definitions have been developed [2–6, 10]. Those discrete
operators defined by this self-consistent approach satisfy analogs of the major theorems of
vector analysis relating the differential operators [6]. By the inclusion of boundary con-
ditions (Dirichlet, Neumann, Robin) into finite-difference methods, the resulting approx-
imation mimics the identities for the differential operators of vector and tensor calculus
described as in [5, 8]. Various types of problems have been solved: steady-state equations,
diffusion equations [12, 14], gas and fluid dynamics equations [8–11, 13, 15], and solid
mechanics equations [10, 16, 17].

Since it is not easy to describe in one paper all possible variants of discrete analogs of
vector analysis and computer programs (see [8, 11, 16, 17], and more), we describe here a
simpler and more efficient (vector) form of well-known discrete analogs. This allows us to
cover finite-volume (FV), finite-difference (FD), and finite-element (FE) approaches from
a unified point of view. Obviously the vector notation does not eliminate the “component”
notation. These two types of notation complement each other nicely. The final choice
depends on concrete features of the problem.

2. VECTOR FORM OF OPERATOR ∇

Let 3D nonorthogonal mesh consist of linear tetrahedral elements (for the sake of sim-
plicity). A typical tetrahedron “abcd” with position-vectors of verticesra, rb, r c, andrd is
shown in Fig. 1, where

δr1 = rb − ra, δr2 = r c − ra, δr3 = rd − ra (4)

are the differences between position-vectors of vertices along edges of a tetrahedron which
form a right-handed triad.

The governing equations show that some variables (such asT, p, ρ) at a given point of
space depend on gradients of other variables (such asv, r , E) around this point and vice
versa. Let us place the first variables within the tetrahedron (element variables) and the
second ones on the vertices of the tetrahedron (nodal variables).

As an illustration of the vector form of discretization and object-oriented code, we assume
here the types of cells that are popular in FV methods [11, 16] as well as in FE methods [17].



APPLICATION OF VECTOR ANALYSIS 25

FIG. 1. Tetrahedral element of 3D mesh (• are nodes).

The discretization described here is called a staggered discretization [8], and all descrip-
tions below are of this type of discretization. There are other types of discretization, for
example, when all variables are nodal variables, or when some vectors are described by
their projection to edges of the cell (electric field) [4–6]. There are many other variants of
cells (for example, [2–4, 8, 10, 17]; however, these are beyond the scope of this paper.

2.1. Vector Approximation of∇ in the Finite Volume (FV) Method

Popular FV methods, based on approximation of differential relations∇a, ∇ · a, ∇a,
etc., can be expressed symbolically as in the following [18],

∇ ¯8 = lim
V→0

1

V

∮
S

(ds¯8), (5)

where8 is a scalar, vector, or tensor, and̄denotes a distributive operation (dot or cross
product, etc.) permissible for8. The right-hand side of Eq. (5) can be approximated in the
tetrahedron “abcd” as

∇ ¯8 ≈ 1

V

[
sa ¯ 8b +8c +8d

3
+ sb ¯ 8c +8d +8a

3

+ sc ¯ 8d +8a +8b

3
+ sd ¯ 8a +8b +8c

3

]
, (6)

where8a, 8b, 8c, and8d are nodal variables;sb = (δr3× δr2)/2, sc = (δr1× δr3)/2,
sd = (δr2× δr1)/2 andsa = −sb − sc − sd are outward-oriented areas of the tetrahedron
faces; andV = δr1 · (δr2× δr3)/6 is volume of tetrahedron. The sign “≈” means the first-
order approximation. Hence, from Eq. (6) we could obtain

∇ ¯8 ≈ r m¯ δ8m, (7)

where

δ81 = 8b −8a, δ82 = 8c −8a, δ83 = 8d −8a (8)



26 BESSONOV AND SONG

correspond with Eq. (4), and

r1 = δr2× δr3

6V
, r2 = δr3× δr1

6V
, r3 = δr1× δr2

6V
. (9)

The sets of vectorsδr1, δr2, δr3, and r1, r2, r3 are named the reciprocal vectors [18]
with propertiesδr k · r m = δkm andδrmr m = r mδrm = I , whereδkm is the Kroneker delta
symbol.

Clearly, for an orthogonal rectangular mesh whereδr1 = δxi1, δr2 = δyi2, andδr3 =
δzi3, the gradient

i1
∂

∂x
+ i2

∂

∂y
+ i3

∂

∂z
≈ i1

δ

δx
+ i2

δ

δy
+ i3

δ

δz

follows from Eq. (7).
The construction of the left and the right part of Eq. (7) are similar; therefore, we can

introduce the vector finite difference operator∇∗ = r1+ r2+ r3 by the definition

∇∗ ¯8 = r m¯ δ8m (10)

and Eq. (7) can be rewritten as

∇ ¯8 ≈ ∇∗ ¯8. (11)

From Eq. (11) some important vector operators can be obtained:

∇ ·8 = ∇∗ ·8 = r m · δ8m

∇ ×8 = ∇∗ ×8 = r m × δ8m

∇8 = ∇∗8 = r mδ8m

8∇ = 8∇∗ = δ8mr m.

In papers [4–6, 12], the authors used orthogonal projections of vectors to the faces and
edges of the cells (similar to directions defined in Fig. 1), which are coordinate invariants.
Also, all operators are formulated in “vector” form.

2.2. Vector Approximation of∇ in the “Finite Difference (FD)” method

We can obtain the same results in another way based on approximation of the differential
operator∇:

∇ ¯8 = in ¯ ∂8

∂xn
. (12)

Let variable8 approximated by spatial function in tetrahedron “abcd,” be presented as

8 = r · A + b, (13)



APPLICATION OF VECTOR ANALYSIS 27

whereb andA are constant tensors of the same rank as and of rank one order higher than
8, respectively. For vertices of the tetrahedron we can write

8a = ra · A + b

8b = rb · A + b

8c = r c · A + b (14)

8d = rd · A + b

or

δ81 = δr1 · A
δ82 = δr2 · A (15)

δ83 = δr3 · A

After multiplication of Eq. (15) by respective vectorsi1, i2, andi3 and summation of the
results, it follows that

ikδ8k = imδrm · A,

thus

A = (imδrm)
−1 · ikδ8k = r mδ8m. (16)

Substituting Eqs. (13) and (16) into Eq. (12) leads to the following:

∇ ¯8 ≈ ik ¯ ∂(r · A + b)
∂xk

= ik ¯ ∂(i j x j · r mδ8m)

∂xk
= r m¯ δ8m = ∇∗ ¯ δ8.

It is important thatδr1, δr2, andδr3 (with δ81, δ82, andδ83 defined in the same way) can
be formed from other combinations ofra, rb, r c, andrd not only as shown in Fig. 1, but
also as in Fig. 3.

2.3. Vector Approximation of∇ in “Coordinate Transformation” Style

Let us introduce local coordinate system (x′1, x′2, x′3) in tetrahedron “abcd” with basis-
vectorsi′1, i′2, andi′3 directed alongδr1, δr2, andδr3, respectively (i.e.,i′1 = δr1/|δr1|, . . .)
as in Fig. 1. From the following relations,

∂

∂x′k
= i′k · ∇, k = 1, 2, 3, (17)

∇ can be written as

∇ = i′k
∂

∂x′k
, (18)

where

i′1 = i′2× i′3
i′1 · (i′2× i′3)

, i′2 = i′3× i′1
i′1 · (i′2× i′3)

, i′3 = i′1× i′2
i′1 · (i′2× i′3)

. (19)



28 BESSONOV AND SONG

Using Eqs. (9) and (19), Eq. (18) can be approximated with first-order accuracy as

∇ ≈ r1+ r2+ r3 = ∇∗. (20)

Comparison of the right parts of Eqs. (18) and (20) shows that vectorsr1, r2, andr3 can be
named the vector finite differences along directionsx′1, x′2, andx′3. From Eq. (20) it follows
again that

∇ ¯8 ≈ ∇∗ ¯8.

2.4. Vector Approximation of∇ in n Dimensional (nD) Case

Expansion of the vector style approximation to nD space is possible; it helps to find general
features of∇∗. Let, by analogy,r = ikxk be a position vector of a point in nD Cartesian
space, wherex1, . . . , xn are rectangular orthogonal coordinates with basis vectorsi1, . . . , in
and the summation convention from 1 ton over dummy subscripts is applied [18]. Let a
linear nD tetrahedron withn+ 1 vertices be an element of an nD mesh.

A transformation similar to the above can be applied to the nD generalization of the
formula Eq. (11) as follows:

∇∗ = r1+ r2+ · · · + r n,

r k =

∣∣∣∣∣∣∣∣∣∣∣∣

δr11 δr12 · · · δr1n

δr21 δr22 · · · δr2n
· · · · · · · · · · · ·
i1 i2 · · · in
· · · · · · · · · · · ·
δrn1 δrn2 · · · δrnn

∣∣∣∣∣∣∣∣∣∣∣∣
/
∣∣∣∣∣∣∣∣∣∣∣∣

δr11 δr12 · · · δr1n

δr21 δr22 · · · δr2n
· · · · · · · · · · · ·
δrk1 δrk2 · · · δrkn
· · · · · · · · · · · ·
δrn1 δrn2 · · · δrnn

∣∣∣∣∣∣∣∣∣∣∣∣
, k = 1, . . . ,n. (21)

Hereδr1, . . . , δrn are independent variations of position vectors of nD tetrahedron vertices.
The denominator in Eq. (21) is equal ton!V , whereV is volume of nD tetrahedron.

Equation (9) follows from Eq. (21) whenn = 3. Forn = 2 we obtain

∇∗ = r1+ r2,

r1 =
∣∣∣∣∣ i1 i2
δr21 δr22

∣∣∣∣∣
/∣∣∣∣∣ δr11 δr12

δr21 δr22

∣∣∣∣∣ , r2 =
∣∣∣∣ δr11 δr12

i1 i2

∣∣∣∣/∣∣∣∣ δr11 δr12

δr21 δr22

∣∣∣∣ . (22)

3. VECTOR APPROXIMATION AND FINITE ELEMENT (FE) METHOD

In the simpliest and popular case the field variables in the FE methods are approximated
by linear combinations of known basis functions (or shape functions)Nk(r). If 8 is an
approximate solution, then we can write a series expansion [11, 17] and more,

8(r) =
∑

I

8I NI (r), (23)

where8I are unknown nodal variables, and summation extends over all nodesI . In the
standard FE method the functionsNI (r) are chosen to be locally defined polynomials within



APPLICATION OF VECTOR ANALYSIS 29

each element and to be zero outside the considered element. As a consequence the local
shape functions satisfy the following conditions on each element(e) with I being a node
of (e):

N(e)
I (r) = 0, if r /∈ (e)

N(e)
I (r J) = δI J , for any node ofr J (24)∑

I

N(e)
I (r) = 1, for all r ∈ (e).

The global functionNI in Eq. (23) is obtained by assembling the combinationsN(e)
I of all

the elements to which nodeI belongs.
Let the mesh consist of linear tetrahedral elements “abcd” (Fig. 1), and variable8 is

approximated by linear spatial function written in vector form. Regroup the relation into
the form,

8 = N(e)
a (r)8a + N(e)

b (r)8b + N(e)
c (r)8c + N(e)

d (r)8d, (25)

and find allN(e)
I (r). The classical “component” solutions of this problem can be found in

almost any manual in FE methods. For thr vertices of the tetrahedron we can write vector
form relations as follows. The value ofA is presented by Eq. (16). The value ofb can be
defined from Eq. (14) as

b = 8a − ra · A. (26)

Combining of Eqs. (13), (16), and (26) gives all local shape functionsN(e)
I (r) in Eq. (25)

such as

N(e)
a (r) = 1− (ra − r) · (r1+ r2+ r3)

N(e)
b (r) = (ra − r) · r1

N(e)
c (r) = (ra − r) · r2

N(e)
d (r) = (ra − r) · r3.

Obviously the conditions of Eq. (24) are satisfied.
We can obtain also the vector form for the relations,

∇N(e)
a (r) = r1+ r2+ r3

∇N(e)
b (r) = −r1

∇N(e)
c (r) = −r2

∇N(e)
d (r) = −r3,

which are widely used in the Galerkin method.
The results obtained show that the standard FE method of approximation can be per-

formed in vector form also, again including the set of vectorsr1, r2, and r3. It means



30 BESSONOV AND SONG

that the vectorsr1, r2, andr3 play a general role in approximation in tetrahedron cells.
Second, when8 in Eq. (25) is the vector (or tensor) variable, then there is no need to
repeat the similar transformations for all8 components, as is usually done in computer
implementation.

4. VECTOR APPROXIMATION VERSUS PROJECTION APPROXIMATION

Let us compare traditional (projection) form with vector form of approximation for∇E,
whereE is a scalar (for the simplest case).

4.1. 1D Case

For a 1D case, both types of approximation are equivalent.

4.2. 2D Case

Let 2D nonorthogonal mesh in rectangular coordinates(x1, x2) or (x, y) consist of linear
triangular elements (Fig. 2). Traditional∇E approximation gives the following system (for
example, [8], etc.):

∇x E ≈ (Eb − Ea)(yc − yb)− (Ec − Eb)(yb − ya)

(xb − xa)(yc − yb)− (xc − xb)(yb − ya)
,

(27)

∇yE ≈ (Ec − Eb)(xb − xa)− (Eb − Ea)(xc − xb)

(xb − xa)(yc − yb)− (xc − xb)(yb − ya)
.

Vector approximation of∇E can be written as

∇E ≈ r1δE1+ r2δE2, (28)

where setsr1 andr2 are defined by Eq. (9).

4.3. 3D Case

Let 3D nonorthogonal mesh in rectangular coordinates (x1, x2, x3) or (x, y, z) consist of
linear tetrahedron elements “abcd” (Fig. 1). A traditional approximation of∇E leads to the

FIG. 2. Fragments of meshes of typesI , II , andIII (• is a node, “abc” is an element).



APPLICATION OF VECTOR ANALYSIS 31

formulas

∇x E ≈ {[(yc − yb)(zd − zc)− (zc − zb)(yd − yc)](Eb − Ea)+ [(yc − yb)(zd − zc)

− (zc − zb)(yd − yc)](Ec − Eb)+ [(yb − ya)(zd − zb)

− (zb − za)(yd − yb)](Ed − Ec)}/{[(yc − yb)(zd − zc)

− (zc − zb)(yd − yc)](xb − xa)+ [(zc − zb)(xd − xc)

− (xc − xb)(zd − zc)](yc − yb)+ [(xb − xa)(yd − yb) (29)

− (yb − ya)(xd − xb)](zd − zc)}
∇yE ≈ . . .
∇zE ≈ . . . ,

where∇yE and∇zE are available by cyclic permutation in∇x E. Vector approximation of
∇E gives

∇E ≈ r1δE1+ r2δE2+ r3δE3. (30)

Obviously, from a “mathematical” point of view Eqs. (27) and (28) or Eqs. (29) and (30)
are equivalent, but from a “users” point of view Eqs. (28) and (30) are several times more
compact and, apart from the cleaner syntax, conserve the same visual appearance of∇E.
The vector form of presentation is still more effective whenE is a vector or tensor variable.
One can easily approximate the more complex expressions such asr∇0, ∇0r , and so forth.

5. SOME DETAILS OF VECTOR DIFFERENCE SCHEMES

We shall consider (shortly) some specific details of vector form difference schemes (in
FV style, as a rule). Note that many variants of the numerical scheme in vector form are
available depending on concrete problems, region shapes, order of approximation, type of
cell, user’s inclinations, and so forth. It is necessary to emphasize that we will not discuss
numerical algorithms because they do not directly involve the vector form of approximation.

5.1. Nonorthogonal Meshes

Consider 2D or 3D nonorthogonal meshes whose cells are the unions of one or more
rectangles or tetrahedrons, respectively. Any elements may have individual material prop-
erties (e.g., density). The schematics of 2D meshes are shown in Fig. 2 for one irregular
and two regular meshes, respectively. The control volume is shown here by a grey color
(we conserved term “volume” for 2D case also).

The typeI mesh is formed of triangular elements directly. The meshes of typeII andIII
are formed of quadrangular cells divided by triangular elements (“abc”). The directions of
diagonals in the cells of the typeII mesh can be in the same direction as in Fig. 2, alternating
in a number of ways, or they can vary randomly. The cell midpoint here is placed in the
middle of the diagonal. Each cell of typeIII mesh is divided by four triangles (“abc”) with
midpoint “c” chosen at center of mass of the cell. Midpoint is not an independent node and
has no control volume.



32 BESSONOV AND SONG

For the sake of clarity, we shall use the mesh of typeIII , but the vector form of approxi-
mation can be applied to other types of cells and meshes, either irregular or mixed.

A 3D cell of type III mesh is shown in Fig. 3 and consists of 24 tetrahedra (“abcd,”
“abdf,” . . .). Each of the cells 12 edges is adjacent to two tetrahedra within that cell
(for example, edge “ab” and tetrahedra “abcd” and “abdf”). Midpoints are found for
all edges, faces, and the cell itself. For any midpoint “z,”8z is defined. For example,
8e = (8i+1, j,k +8i, j,k)/2, 8c = (8i+1, j+1,k +8i, j+1,k +8i+1, j,k +8i, j,k)/4, etc. The
cell volume is separated between nodal control volumesVi, j,k, Vi+1, j,k, Vi+1, j+1,k, Vi, j+1,k,
Vi, j,k+1, Vi+1, j,k+1, Vi+1, j+1,k+1, andVi, j+1,k+1. For example, the value ofVi, j,k is the sum
of 48 parts (“acde,” “adef,”. . . , Fig. 3) from all tetrahedra that touch node(i, j, k), and
the triangle “cde” is one of 48 triangles (less for boundaries and corner nodes) which form
the control surfaceSi, j,k and enclose the control volumeVi, j,k. The outward-oriented surface
element scde for triangle “cde” is equal to(δr2× δr3)/2 for the node(i, j, k) and the same
but with opposite direction for the node(i + 1, j, k).

5.2. Vector Form of Computer Programming

Vector schemes have theoretical interest, only unless we use the vector notation through all
the stages: governing equations→ numerical scheme→ computer program nomenclature.
Fortunately, algorithmic languages such as Fortran90 or C++ allow the definition of new
data types. The variables of this type can be as easily applied as variables of intrinsic types
(for example, as in complex types in Fortran77). New data types once developed and tested
can be used further as standard. Obviously, they have to provide an intuitive interface to
users. In our case, they are 2D and 3D vector and tensor data types.

In other words, one must not develop subroutines for computing volumes and areas, but
must develop and work with new data types (new classes) for vector and tensor objects with
overloaded operations such as dot, cross, and diadic (see sample of code below).

Let us discuss some examples of difference schemes in vector form in the region of
complex shapes, where a 3D mesh of typeIII and of sizeI × J × K is introduced. Let’s
study a 3D model problem,

∂

∂t

∫
V

8 dV =
∮
S

(ds · ∇8), (31)

where8 is any type variable of (scalar, vector, or tensor).
The explicit scheme for Eq. (31) has the form,

8n+1
i, j,k −8n

i, j,k

δt
Vi, j,k = 2n

i, j,k ≡
∑
Si, j,k

f n
rst, (32)

whereδt is time step,n is number of the time step,f n
rst is influx over “rst,” “rst” is any

triangle part ofSi, j,k, and2n
i, j,k is total influx overSi, j,k. For example,

f n
cde= scde · ∇∗8n = δr2× δr3

2
· (r1δ8n

1 + r2δ8n
2 + r3δ8n

3

)
(33)

for triangle “cde” in Fig. 3. It is not necessary to write all addendums in the right part of
Eq. (32) explicitly. Instead, a simple algorithm can be used for computing8n+1

i, j,k according
to Eqs. (32) and (33)



APPLICATION OF VECTOR ANALYSIS 33

FIG. 3. 3D cell of typeI I I mesh including 24 tetrahedral elements (• are nodes).

1 PhiType8(I , J, K ),2(I , J, K ), δ81, δ82, δ83, fcde; % PhiType andVector are
2 Vector r(I , J, K ), δr1, δr2, δr3, r1, r2, r3; % new data types developed by user
3 Real V(I , J, K ), Vabcd; % Intrinsic type for real values
4 do i=1 to I; do j=1 to J;do k=1 to K; % Cycles over all nodes
5 r i, j,k← mesh generator;
6 8i, j,k← initial conditions;
7 enddo; enddo; enddo;
8 do t = 0 stepδt to tfinish; % Cycle by time
9 do i=1 to I; do j=1 to J;do k=1 to K; % Cycles over all nodes
10 8i, j,k := 0; % “0” is PhiType zero
11 enddo; enddo; enddo;
12 do i=1 to I-1;do j=1 to J-1;do k=1 to K-1; % Cycles over all cells
13 do n=1 to 12; % Cycle over all tetrahedra in this cell
14 . . . % Cyclic permutation of indices in the cell and definition
15 . . . % indices of vertices “a” and “b” in the tetrahedron “abcd”
16 δr1 := r ib, jb,kb − r ia, ja,ka ; δr2 := . . .; δr3 := . . .; % Eq. (4)
17 δ81 :=8ib, jb,kb −8ia, ja,ka ; δ82 := . . .; δ83 := . . .; % Eq. (8)
18 Vabcd := δr1 · (δr2× δr3)/6 % Volume of tetrahedron “abcd”
19 r1 := (δr2× δr3)/(6Vabcd); r2 := . . .; r3 := . . .; % Eq. (9)
20 fcde:= (δr2× δr3)/2 · (r1¯ δ81+ r2¯ δ82+ r3¯ δ83); % Eq. (33)
21 2ia, ja,ka :=2ia, ja,ka + fcde; % fcde is joining to2ia, ja,ka and2ib, jb,kb

22 2ib, jb,kb :=2ib, jb,kb − fcde; % (taking into account the sign)
23 Via, ja,ka :=Via, ja,ka + Vabcd/2; % Vabcd is contributed to
24 Vib, jb,kb :=Vib, jb,kb + Vabcd/2; % corresponding nodal volumes
25 enddo; enddo;
26 do i=1 to I; do j=1 to J;do k=1 to K; % Cycles over all nodes
27 8i, j,k :=8i, j,k + δt ∗2i, j,k/Vi, j,k % Eq. (32). For boundary nodes8i, j,k :=BC
28 enddo; enddo; enddo;
29 enddo;



34 BESSONOV AND SONG

Using variables of new types (lines 1, 2) allows the conservation of the syntax of vector
difference schemes in computer programming (lines 16–22, 27). For example, the type
Vector (line 2) was developed for manipulations with 3D vector variables. As a result,
the program size decreased and simplified in comparison with the traditional “component”
program, where huge similar expressions for all dimensions such as Eq. (29) are necessary
to the programming. Vector technology also allows a decrease in syntax errors and easier
modification of algorithms and program codes.

To solve governing Eq. (31) with different types of8 (scalar, vector, or tensor) we have
to definePhiType (line 1) asReal, Vector or Tensor, respectively. When8 is a tensor
variable (for example), the object-oriented programming allows the introduction of one
array of tensor type for8. In traditional programming we must introduce nine arrays for
any components of tensor8, correspondingly.

The remainder “numerical” part of computer program (beginning from line 2) is re-
usable. It is easy to construct an absolutely implicit or ADI [11] numerical scheme in vector
form.

Other examples of approximation in vector form are here.

1. The scheme for conservation law of mass in any tetrahedral element of 3D mesh can
be written as

ρn+1− ρn

δt
= −ρr m · δvm.

Explicit/implicit properties of right-hand side are not discussed here.
2. When fluid flows through Eulerian mesh, the conservation law of momentum includes

the convective term ∮
S

(ds · v8), (34)

where8 is convected substance. An approximation of the surface integral Eq. (34) for the
same typical part “cde” of the control surfaceSi, j,k can be obtained as in upwind difference
schemes [11] ∫

Scde

(ds · v8) = a+ |a|
2

8i, j,k + a− |a|
2

8i+1, j,k,

where

a = δr2× δr3

2
· vi, j,k + vi+1, j,k

2
.

3. The next scheme within a tetrahedral element

T = −pI + {h1(δrmrm
0 ) ·

(
rn

0δrn
)+ h2

[(
δr kr k

0

) · (rq
0δrq

)]2}
can be written for constitutive relationship Eq. (2). Hererm

0 = rm|t=0.



APPLICATION OF VECTOR ANALYSIS 35

6. PRACTICAL “PROOF” OF THE PERFORMANCE OF THE VECTOR

FORM OF DISCRETIZATION

As a provisional step the results of simulation of hyperelastic 3D pyramid twisting are
shown in Fig. 4. Governing equations included the momentum equation and the rheological
model Eq. (2), where

h1 = 2

(
∂W

∂ I1
+ I1

∂W

∂ I2

)
, h2 = −2

∂W

∂ I2
, I1 = trB, I2 = 1

2
(tr2B− trB2),

andW is the strain energy function defined as follows [19]:

W = C10(I1− 3)+ C01(I2− 3)+ C11(I1− 3)(I2− 3)

+C20(I1− 3)2+ C30(I1− 3)3. (35)

The material propertiesC10, . . . ,C30 in Eq. (35) were taken similar to natural rubber. The
volume of each tetrahedron element of 3D Lagrangian mesh (Fig. 3) was conserved. As a
numerical method we used a combination of artificial compressibility and ADI methods [11].

FIG. 4. 3D hyperelastic pyramid: (a) undeformed state; (c) after twisting around axisx1 by 2π ; (b) and (d)
2D cross-sections of the pyramid normal to directionx3 at x3 = 0.1, 0.3, 0.5, 0.7, 0.9 for (a) and (c), respectively.



36 BESSONOV AND SONG

FIG. 5. 4D hyperelastic pyramid: (a) undeformed state and (c) after twisting around axisx1 on 2π , axisx2 on
2π and axisx3 on 2π can’t be shown (compared with Fig. 4); (b) and (d) 3D cross-sections of the pyramid normal
to directionx4 at x4 = 0.1, 0.3, 0.5, 0.7, 0.9 for (a) and (c) states, respectively.

The nondimensional size of the pyramid in rectangular coordinates(x1, x2, x3) was 10
in direction x1; the square bottom (atx1 = 0) and top (atx1 = 10) were 12 and 0.252,
respectively. The bottom was fixed; the top was twisted initially (before iteration begins)
around axesx1 by 2π and fixed; and other surfaces were free. The rheological models and
algorithms were the same as before. Simulations of undeformed, and twisted 3D pyramids
and their cross sections normal to axisx3 are shown in Fig. 4.

Increasing problem dimensions, increasing complexity of the geometry of simulations,
or going from linear to nonlinear problem usually increase programming efforts. So for a
“proof” of vector technique performance we assumed that the governing equations con-
serve invariant vector form in nD Cartesian space and generalized the problem of pyramid
twisting for 4D case. The nondimensional size of the 4D pyramid in rectangular coordi-
nates(x1, x2, x3, x4) was 10 along directionx1; the cubical bottom (atx1 = 0) and top (at



APPLICATION OF VECTOR ANALYSIS 37

x1 = 10) were 13 and 0.253, respectively. The bottom was fixed; the top was initially twisted
around each axis,x1, x2, andx3, by 2π and fixed; and other 3D surfaces of the 4D pyramid
were free. A Lagrangian mesh with 9× 9× 9× 85 4D cells of typeIII was used. Any cell
of mesh consisted of 192 4D tetrahedra. Of course we can’t draw the 4D solid explicitly,
so subitems (a) and (c) are absent in Fig. 5 in contrast to Fig. 4. But the simulation allows
the obtainment any 3D cross section of 4D pyramid. Some cross sections normal to axisx4

before and after twisting are shown in Fig. 5.
The main performance of the vector technique in this example is that the listing of

the “numerical” part of the computer program for 4D simulation does not increase many
times but less than 40% in comparison with the 3D case (based on vector technique also).
Approximately 70% of the 3D program was reusable.

7. CONCLUSIONS

The vector form of approximation and computer programming does not replace the
projection forms. These two forms can complement each other (in the same way that Fortran
does not replace an assembler). The vector form of approximation and programming can
be applied with great effect in numerical simulation of problems with both “symmetrical”
and “degenerated” governing equations, such as plate and rod space bending or fluid film
flows.

ACKNOWLEDGMENTS

The authors thank Drs. J. A. Levitt and V. G. Lenss in the Ford Research Laboratories for their support and
collaboration. The authors especially thank Professor W. W. Schultz at the University of Michigan for his help
and many useful discussions. This work is partially supported by Yeungnam University BK21 project.

REFERENCES

1. P. G. Giarlet,Mathematical Elasticity, Vol. 1, Three Dimensional Elasticity(North-Holland, Amsterdam,
1993).

2. A. Solov’ev, E. Solov’eva, V. Tishkin, M. Shashkov, and A. Favorsskii, Approximation of finite difference
operators on a mesh of dirichlet cells,Diff. Eq.22, 881 (1986).

3. A. Favorskii, A. Samarskii, M. Shashkov, and V. Tishkin, Operational finite-difference schemes,Diff. Eq.17,
854 (1981).

4. J. M. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logically
rectangular grids,Int. J. Comput. Math. Appl.33, 81 (1997).

5. M. Shashkov and J. Hyman, The approximation of boundary conditions for mimetic finite difference methods,
Comput. Math. Appl.36, 79 (1998).

6. M. Shashkov and J. Hyman, The orthogonal decomposition theorems for mimetic finite difference methods,
SIAM J. Numer. Anal.36, 788 (1999).

7. M. Shashkov and J. Hyman, The adjoint operators for natural discretizations for the divergence, gradient and
curl on locally rectangular grids,IMACS J. Appl. Numer. Math.25, 413 (1997).

8. M. Shashkov,Conservative Finite-Difference Methods on General Grids, Symbolic and Numeric Computation
Series (CRC Press, New York, 1996).

9. E. J. Caramana, D. E. Burton, M. Shashkov, and P. P. Whalen, The construction of compatible hydrodynamics
algorithms utilizing conservation of total energy,J. Comput. Phys.146, 227 (1998).

10. A. Favorskii, A. Samarskii, M. Shashkov, and V. Tishkin, Employment of the reference-operator method in
the construction of finite-difference analogs of tensor operations,Diff. Eq.18, 881 (1982).



38 BESSONOV AND SONG

11. C. Hirsch,Numerical Computation of Internal and External Flows, Vols. 1, 2, (Wiley, NewYork, 1988).

12. M. Shashkov and S. Steinberg, Support-operators finite-difference algorithms for general elliptic problems,
J. Comput. Phys.118, 131 (1995).

13. M. Shashkov and S. Steinberg, Solving diffusion equations with rough coefficients in rough grids,J. Comput.
Phys.129, 383 (1996).

14. J. Hyman, M. Shashkov, and S. Steinberg, The numerical solution of diffusion problems in strongly Hetero-
geneous non-isotropic Materials,J. Comput. Phys.132, 130 (1997).

15. K. Salari and S. Steinberg, Flux-corrected transport in a moving grid,J. Comput. Phys.111, 24 (1994).

16. M. L. Wilkins,Calculation of Elastic–Plastic Flow, in Methods in Computational Physics, edited by B. Alder,
S. Fernbach, M. Rotenberg (Academic Press, NewYork, 1964), Vol. 3, p. 211.

17. O. C. Zienkewicz,The Finite Element Method, 3rd ed. (McGraw-Hill, NewYork, 1977).

18. M. R. Spiegel,Vector Analysis and the Introduction to Tensor Analysis(Schaum, NewYork, 1959).

19. R. S. Rivlin,Large Elastic Deformations in Rheology, Theory and Application, edited by F. R. Eirich (Academic
Press Inc., San Diego, 1956), Vol. 1, p. 421.


	1. INTRODUCTION
	2. VECTOR FORM OF OPERATOR
	FIG. 1.

	3. VECTOR APPROXIMATION AND FINITE ELEMENT (FE) METHOD
	4. VECTOR APPROXIMATION VERSUS PROJECTION APPROXIMATION
	FIG. 2.

	5. SOME DETAILS OF VECTOR DIFFERENCE SCHEMES
	FIG. 3.

	6. PRACTICAL “PROOF” OF THE PERFORMANCE OF THE VECTOR
FORM OF DISCRETIZATION
	FIG. 4.
	FIG. 5.

	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

