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It is well known that vector—tensor notation is a compact and natural language
for the mathematical formulation of continuum mechanics problems. Here we de-
scribe the application of vector technique to numerical simulation starting with a
mathematical formulation. We provide an efficient numerical scheme and furnish
an implementation as a computer program. As a result (in comparison with tradi-
tional “component” form), the two last steps are significantly simplified, especially
for multidimensional problems with various boundary conditions in irregular geo-
metries where nonorthogonal meshes are applied. Therefore, more attention can be
focused on the physical nature of problems. Apart from the cleaner syntax, vec-
tor notation conserves the structure of traditional numerical algorithms and solves
multidimensional problems with minimum additional programming effort. Complex
practical applications of this technique are described as well2001 Academic Press
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1. INTRODUCTION

We describe here a concise illustration of application of vector techniques to nume
cal simulation of several continuum mechanics problems from mathematical formulati
(Section 1) through numerical scheme (Sections 2—4). We also describe a computer
gram based on vector—tensor types of variables, which can be developed with the hel
object-oriented languages (Section 5). The uniform (“vector”) point of view on all thre
steps allows one to simplify the process of simulation significantly, especially for multic
mensional problems in irregular geometries.

We would like to illustrate with the help of a similar situation. Let us deal with problem
from the area of algebra of complex numbers. If one uses a programming language witt
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APPLICATION OF VECTOR ANALYSIS 23

complex type variables (BASIC, for example), one has to prepare all formulas for real ¢
imaginary components explicitly (i.e., in “component” form). On the other hand, when o
uses programming language with an intrinsic type of complex variable (such as Fortran
final formulas can be conserved in natural and compact “complex” form. Obviously bc
cases are equivalent from a mathematical point of view, but in the latter case, the user
significantly simplify final formulas and the program.

Vector—tensor notation is a natural language for continuum mechanics problems. O
ously when formulas for computer simulation are developed, it is important to prepare
“interface” of final formulas in a form that corresponds best to the programming langue
that will be used in the future. Unfortunately, Fortran77 (the basic language for professic
numerical simulation) does not have the intrinsic type of vector (tensor) variables; the
fore, a discrete analog of vector analysis must be prepared in “component” form for ¢
component explicitly. In general, the case of multidimensional mechanics problems w
vector or tensor variables and irregular geometries where nonorthogonal meshes rende
computer programming has become increasingly complex.

Object-oriented languages such as C++ or Fortran90 (dated from 1980 and 1990 res
tively) allow the development of new data types or new classes (for vector-tensor varial
in our case), which encapsulate all features of these data types. The variables of this typ
be as easily applied as variables of intrinsic types (for example, complex types in Fortran
In other words, one does not have to develop subroutines for computing volumes and a
and so on, but one must develop and work with new data types (new classes) for ve
(tensor) objects with overloaded operations such as dot, cross, and diadic (see samj
Section 5.2). Obviously, once a coordinate System is chosen, one must always be conce
about components, at least in non-Cartesian coordinate systems. New classes allow e
sulation of the features. The implementation of this technique allows a significant reduct
in the amount of work.

The general system of continuum mechanics equations (conservation laws of mass,
mentum, and energy) can be written as

d
—'0 =—pV.v

d
a/ vdV = f(ds T 1)

Y

d

a/,o ]{v(dsT)
\%

wheret is time, v is velocity, p is density,T is the stress tensoE is energy,V is the
Lagrangian volume of space enclosed by surfgadifferential area vectads = nd S and
n is an outward normal vector &

The mathematical formulation of the problem (governing equations) includes syst
(Eqg. (1)) and constitutive relationships. For example, they are

T=-pl+hB+hB-B @
for a hyperelastic solid [1] or

= —pl 4+ u(VV +VV) 3
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for a Newtonian incompressible fluid. Hegeis pressureu is viscosity;| is the unit
tensor;B = F - F' is the left Cauchy—Green tensé;= r Vo; V = 9/dr (for rectangular
coordinatesXs, X2, X3) or (X, Y, 2); V = imd/dXm, Whereiy, i,, andiz are basis vectors);
Vo = 0/drp; r is the time-dependent Lagrangian position veatge= r|i—o; andh; andh;,
are material properties that are functions of the invari@nt¥he summation convention
over dummy (repeated) subscripts is inferred over the dimensions of the prabldm;
a x b, andab are dot, cross, and dyadic products for vec@ndb, respectively, and
av = (vVa)'.

Most of the difficulties in modern computational mechanics are caused during the stt
of 2D/3D problems with complex shapes and nonlinear rheological models.

Methods of creating a discrete analog of vector analysis on nonorthogonal meshes v
developed starting around 1950 and are still evolving. A series of papers creating a disc
analog of vector analysis on nonorthogonal grids was developed by Shashkov, Hyn
Steinberg and others.

Different variants of natural discrete analogs of the divergence, gradient, and curl ope
tors based on coordinate-invariant definitions have been developed [2—6, 10]. Those dis
operators defined by this self-consistent approach satisfy analogs of the major theoren
vector analysis relating the differential operators [6]. By the inclusion of boundary co
ditions (Dirichlet, Neumann, Robin) into finite-difference methods, the resulting appro
imation mimics the identities for the differential operators of vector and tensor calcul
described as in [5, 8]. Various types of problems have been solved: steady-state equat
diffusion equations [12, 14], gas and fluid dynamics equations [8-11, 13, 15], and sc
mechanics equations [10, 16, 17].

Since it is not easy to describe in one paper all possible variants of discrete analog
vector analysis and computer programs (see [8, 11, 16, 17], and more), we describe h
simpler and more efficient (vector) form of well-known discrete analogs. This allows us
cover finite-volume (FV), finite-difference (FD), and finite-element (FE) approaches fro
a unified point of view. Obviously the vector notation does not eliminate the “componer
notation. These two types of notation complement each other nicely. The final cho
depends on concrete features of the problem.

2. VECTOR FORM OF OPERATOR V

Let 3D nonorthogonal mesh consist of linear tetrahedral elements (for the sake of s
plicity). A typical tetrahedron “abcd” with position-vectors of vertiagsry, r¢, andry is
shown in Fig. 1, where

Sfri=rp—Ta, 8fpa=Trc—Ta, &f3=Trq—Tra 4)

are the differences between position-vectors of vertices along edges of a tetrahedron w
form a right-handed triad.

The governing equations show that some variables (su@h psp) at a given point of
space depend on gradients of other variables (sush gsE) around this point and vice
versa. Let us place the first variables within the tetrahedron (element variables) and
second ones on the vertices of the tetrahedron (nodal variables).

As an illustration of the vector form of discretization and object-oriented code, we assu
here the types of cells that are popular in FV methods [11, 16] as well as in FE methods [
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FIG. 1. Tetrahedral element of 3D meshdre nodes).

The discretization described here is called a staggered discretization [8], and all des
tions below are of this type of discretization. There are other types of discretization,
example, when all variables are nodal variables, or when some vectors are describe
their projection to edges of the cell (electric field) [4—6]. There are many other variants
cells (for example, [2—4, 8, 10, 17]; however, these are beyond the scope of this paper

2.1. Vector Approximation oV in the Finite Volume (FV) Method

Popular FV methods, based on approximation of differential relatiomsV - a, Va,
etc., can be expressed symbolically as in the following [18],

.1
V@@:\I/@()Vf(ds@ D), (5)
S

where® is a scalar, vector, or tensor, agddenotes a distributive operation (dot or cross
product, etc.) permissible fab. The right-hand side of Eq. (5) can be approximated in th
tetrahedron “abcd” as

1 ®p + D¢ + D D¢ + Dy + D

Voo~ = |go bt Pt o 5Pt Pt
Vv 3 3

Py + Pa + Py Dy + Py + D¢

—ar a0 —ar v ey 6
+50 3 +5 0 3 (6)

where®,, &y, &, and®dy are nodal variablesy, = (6r3 x 6ry)/2, & = (8r1 x 8r3)/2,
S = (8rp x 8rp)/2 ands, = —s, — & — § are outward-oriented areas of the tetrahedrol
faces; and/ = éry - (8ro x 8r3)/6 is volume of tetrahedron. The sigr™ means the first-
order approximation. Hence, from Eq. (6) we could obtain

VOO AT §dn, (7)

where

8q)1=(bb_(ba, 5<D2=<Dc_q>a, 3CD3= dyg — @q (8)
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correspond with Eqg. (4), and

I’l— 8o x 8ra I’2— 8rg x 8rq r3_ 8rqy x érp

6V 6v Y ©)

The sets of vectorsry, 8ry, 8ra, andr?, r2, r are named the reciprocal vectors [18]
with propertiessry - r™ = 8km andsrr™ = rmér, = |, wheredym is the Kroneker delta
symbol.

Clearly, for an orthogonal rectangular mesh whére= §xiy, §rp, = 8yi,, andérz =
§zi3, the gradient

ia+ia+ia~i8+i8+i8
Lax 28y 39z~ tox 2<Sy 352

follows from Eq. (7).
The construction of the left and the right part of Eq. (7) are similar; therefore, we ¢
introduce the vector finite difference opera%ar = r! + r2 + r3 by the definition

VOO =r"0sdbny (10)
and Eq. (7) can be rewritten as
VOd~A~ V0. (11)
From Eq. (11) some important vector operators can be obtained:

V- o=V d=r".60,
VXx®=V"x®=r"x§d
Vo = V¥ = rMsdy,
OV = OV* = §P,r™.

In papers [4-6, 12], the authors used orthogonal projections of vectors to the faces
edges of the cells (similar to directions defined in Fig. 1), which are coordinate invariar
Also, all operators are formulated in “vector” form.

2.2. Vector Approximation oV in the “Finite Difference (FD)" method

We can obtain the same results in another way based on approximation of the differer
operatorv:

D
VOd =i —. 12
©) neaxn (12)

Let variabled® approximated by spatial function in tetrahedron “abcd,” be presented ¢

d=r-A+b, (13)
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whereb andA are constant tensors of the same rank as and of rank one order higher t
@, respectively. For vertices of the tetrahedron we can write

q)azra'A+b
O, =r,-A+Db
®c=rc-A+b (14)
dg=rgq-A+Db
or
5Py = 5rq- A
Py =6rr- A (15)
Pz =46r3-A

After multiplication of Eq. (15) by respective vectars i, andiz and summation of the
results, it follows that

iKdDk = imérm - A,
thus
A= (imdrm) - ikddy = rmsdp,. (16)
Substituting Egs. (13) and (16) into Eq. (12) leads to the following:

o(r-A+b) i @8(i,~xj-rm8d>m)
—_— = k —_— =

Mo &by =V ©sd.
I Xk Xk

VOoorik®

It is important thasry, r,, andsr 3 (with § &1, §®,, ands 3 defined in the same way) can
be formed from other combinations of, ry, rc, andrgq not only as shown in Fig. 1, but
also as in Fig. 3.

2.3. Vector Approximation oV in “Coordinate Transformation” Style

Let us introduce local coordinate systerj,(x;, X3) in tetrahedron “abcd” with basis-
vectorsi}, i5, andij directed alongr 1, éro, andérs, respectively (i.e.iy = éri/|8r4f, ...)
as in Fig. 1. From the following relations,

0

o, =iV, k=123, a7
V can be written as
V= I/kaix{(’ (18)
where
a_ _Bxis o Waxih g ix 19)

R S N VR (P A S R (PR A
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Using Egs. (9) and (19), Eqg. (18) can be approximated with first-order accuracy as
Veart4rz4rd=ve (20)

Comparison of the right parts of Egs. (18) and (20) shows that vector$, andr can be
named the vector finite differences along directi®fisx;, andxs. From Eq. (20) it follows
again that

Voo~V O .

2.4. Vector Approximation oV in n Dimensional (nD) Case

Expansion of the vector style approximation to nD space is possible; it helps to find gen
features ofV*. Let, by analogyr = ixXx be a position vector of a point in nD Cartesian
space, whergy, .. ., X, are rectangular orthogonal coordinates with basis vetors. , i,
and the summation convention from 1rmver dummy subscripts is applied [18]. Let a
linear nD tetrahedron with + 1 vertices be an element of an nD mesh.

A transformation similar to the above can be applied to the nD generalization of t
formula Eq. (11) as follows:

V*=r1+r2+~-~+r”,

5['11 5I’12 (Srln 8r11 8r12 <Sr1n
(Sl'zl (Srzg ce (Sl'zn 8[’21 5I’22 ce (San
rk: .... .-.. e .... e ... e “ e , k:]_,‘”,n. (21)
i1 I Orgr Ol 8kn
5rn1 Srnz ce Srnn (Srnl 5rn2 s Srnn
Heredrq, ..., 8r, are independent variations of position vectors of nD tetrahedron vertice

The denominator in Eq. (21) is equalribV, whereV is volume of nD tetrahedron.
Equation (9) follows from Eq. (21) whem= 3. Forn = 2 we obtain

V*=rl4r2
i i or or ri1 8r rig 8r
| 2 u ofizl o 8_115.12/5113 12| 22)
8ro1 Orao 8ro1 Oram I 12 dra1 8ro

3. VECTOR APPROXIMATION AND FINITE ELEMENT (FE) METHOD

In the simpliest and popular case the field variables in the FE methods are approxim:
by linear combinations of known basis functions (or shape functidis). If @ is an
approximate solution, then we can write a series expansion [11, 17] and more,

() =Y @N(r), (23)
|

where®, are unknown nodal variables, and summation extends over all Hodeghe
standard FE method the functioNs(r) are chosen to be locally defined polynomials within
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each element and to be zero outside the considered element. As a consequence the
shape functions satisfy the following conditions on each elert@nwith |1 being a node
of (e):
N®r) =0, ifré¢(e
N®(r;) =8, foranynode of, (24)
S ONFr =1 forallr e (o).

The global functionN, in Eq. (23) is obtained by assembling the combinatiNlﬁ"é of all
the elements to which nodebelongs.

Let the mesh consist of linear tetrahedral elements “abcd” (Fig. 1), and vadalde
approximated by linear spatial function written in vector form. Regroup the relation in
the form,

® = NO N Da+ N (N dp + NO (1) D¢ + NP (r) g, (25)

and find aIIN,(e)(r). The classical “component” solutions of this problem can be found i
almost any manual in FE methods. For thr vertices of the tetrahedron we can write ve
form relations as follows. The value #éf is presented by Eq. (16). The valuetotan be
defined from Eq. (14) as

bzq)a_ra'A. (26)

Combining of Egs. (13), (16), and (26) gives all local shape functhfi&r) in Eq. (25)
such as

NO@T) =1—(a—r1)- 4124713

NP () = (rg—r)-rt

NO@r) = (ra—r)-r?

NP () = (ra—r1)-rs.

Obviously the conditions of Eq. (24) are satisfied.
We can obtain also the vector form for the relations,

VNE () =rt+r2 403

VNE(r) = —rt
VNEO(r) = —r?
VNP(r) = —r®,

which are widely used in the Galerkin method.
The results obtained show that the standard FE method of approximation can be
formed in vector form also, again including the set of vectdrsr?, andr2. It means
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that the vectors?, r2, andr® play a general role in approximation in tetrahedron cells
Second, whenb in Eg. (25) is the vector (or tensor) variable, then there is no need
repeat the similar transformations for @l components, as is usually done in computer
implementation.

4. VECTOR APPROXIMATION VERSUS PROJECTION APPROXIMATION

Let us compare traditional (projection) form with vector form of approximatiorMér,
whereE is a scalar (for the simplest case).

4.1. 1D Case

For a 1D case, both types of approximation are equivalent.

4.2. 2D Case

Let 2D nonorthogonal mesh in rectangular coordinétesx,) or (X, y) consist of linear
triangular elements (Fig. 2). TraditiondlE approximation gives the following system (for
example, [8], etc.):

(Ep — Ea)(Ye — ¥b) — (Ec — Ep)(¥b — Ya)

V«E ~ )
(Xo — Xa) (yc —¥b) — Xe — Xb)(yb - Ya) (27)
V.E ~ (Be = En) (%6 — Xa) — (BEp — Ea)(Xc — Xb)
T 06— Xa) (Yo — Yb) — (X — X0) (Yb — Ya)
Vector approximation oV E can be written as
VE ~ r1$E; + r25E,, (28)

where sets! andr? are defined by Eq. (9).

4.3. 3D Case

Let 3D nonorthogonal mesh in rectangular coordinates¢, X3) or (X, Y, z) consist of
linear tetrahedron elements “abcd” (Fig. 1). A traditional approximatidvibfieads to the

FIG. 2. Fragments of meshes of typesll, andlll (e is a node, “abc” is an element).
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formulas

VxE ~ {[(Ye — Y0)(Zd — Zo) — (Zc — Zo) (Yo — Yo)I(Eb — Ea) + [(Yo — Yb)(Zd — Zc)
—(Ze — 2p)(Ya — Yo)(Ec — Ep) + [(Yo — Ya)(Zd — Zp)
— (2o — Za)(Ya — Y»)](Ea — Eo)}/{[(Ye — Yo)(Za — Z)
—(Ze = Zp) (Yo — Yo)] (X0 — Xa) + [(Ze — Zp) (Xa — Xc)

— (Xe — Xp)(Zd — Zo)](Ye — Yb) + [(Xo — Xa) (Ya — Yb) (29)
— (Yo — Ya) (Xd — X0)](Zd — Z)}

VyEx ...

V,E~ ...,

whereVyE andV,E are available by cyclic permutation W, E. Vector approximation of
VE gives

VE ~ r'8E; 4+ r?5E, + r3SEa. (30)

Obviously, from a “mathematical” point of view Egs. (27) and (28) or Egs. (29) and (3K
are equivalent, but from a “users” point of view Egs. (28) and (30) are several times m
compact and, apart from the cleaner syntax, conserve the same visual appeafdkce o
The vector form of presentation is still more effective witeis a vector or tensor variable.
One can easily approximate the more complex expressions sush,a€gr, and so forth.

5. SOME DETAILS OF VECTOR DIFFERENCE SCHEMES

We shall consider (shortly) some specific details of vector form difference schemes
FV style, as a rule). Note that many variants of the numerical scheme in vector form
available depending on concrete problems, region shapes, order of approximation, tyy
cell, user’s inclinations, and so forth. It is necessary to emphasize that we will not disc
numerical algorithms because they do not directly involve the vector form of approximatic

5.1. Nonorthogonal Meshes

Consider 2D or 3D nonorthogonal meshes whose cells are the unions of one or n
rectangles or tetrahedrons, respectively. Any elements may have individual material pi
erties (e.g., density). The schematics of 2D meshes are shown in Fig. 2 for one irreg
and two regular meshes, respectively. The control volume is shown here by a grey ¢
(we conserved term “volume” for 2D case also).

The typel mesh is formed of triangular elements directly. The meshes ofltygred|l|
are formed of quadrangular cells divided by triangular elements (“abc”). The directions
diagonals in the cells of the typemesh can be in the same direction as in Fig. 2, alternatin
in a number of ways, or they can vary randomly. The cell midpoint here is placed in t
middle of the diagonal. Each cell of typk mesh is divided by four triangles (“abc”) with
midpoint “c” chosen at center of mass of the cell. Midpoint is not an independent node ¢
has no control volume.
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For the sake of clarity, we shall use the mesh of tipebut the vector form of approxi-
mation can be applied to other types of cells and meshes, either irregular or mixed.

A 3D cell of typelll mesh is shown in Fig. 3 and consists of 24 tetrahedra (“abcd
“abdf” ...). Each of the cells 12 edges is adjacent to two tetrahedra within that c
(for example, edge “ab” and tetrahedra “abcd” and “abdf”). Midpoints are found ft
all edges, faces, and the cell itself. For any midpoint ‘®; is defined. For example,
D = (Pit1jk+ Pi,jk)/2, Pc = (Pit1j+1k + Pij+1k + Pivrjk + Pijk)/4, etc. The
cell volume is separated between nodal control voluMigg, Vit1j ks Vi+1j+1k: Vi j+1k
Vi ikt Vigsj ket Vitsj+ik+1, andVi ji1ke1. For example, the value of j i is the sum
of 48 parts (“acde,” “adef,”. ., Fig. 3) from all tetrahedra that touch node j, k), and
the triangle “cde” is one of 48 triangles (less for boundaries and corner nodes) which fc
the control surfac§ j « and enclose the control volurivg; «. The outward-oriented surface
element g for triangle “cde” is equal t@sr, x ér3)/2 for the nod«i, j, k) and the same
but with opposite direction for the node+ 1, j, k).

5.2. Vector Form of Computer Programming

Vector schemes have theoretical interest, only unless we use the vector notation throug
the stages: governing equatiorsnumerical scheme> computer program nomenclature.
Fortunately, algorithmic languages such as Fortran90 or C++ allow the definition of ni
data types. The variables of this type can be as easily applied as variables of intrinsic ty
(for example, as in complex types in Fortran77). New data types once developed and te
can be used further as standard. Obviously, they have to provide an intuitive interface
users. In our case, they are 2D and 3D vector and tensor data types.

In other words, one must not develop subroutines for computing volumes and areas,
must develop and work with new data types (new classes) for vector and tensor objects:
overloaded operations such as dot, cross, and diadic (see sample of code below).

Let us discuss some examples of difference schemes in vector form in the regior
complex shapes, where a 3D mesh of tyjpeand of sizel x J x K is introduced. Let’s
study a 3D model problem,

0

o [ @dv= f(ds Vo), (31)

\Y

where® is any type variable of (scalar, vector, or tensor).
The explicit scheme for Eq. (31) has the form,

d>”+1k K
gk T Lk | IR
————Vijk=€ |]k—z:frst7 (32)
S, j.k
whereét is time stepn is number of the time stepf,, is influx over “rst,” “rst” is any
triangle part ofg j «, and@{‘qj,k is total influx over§ j . For example,
n eqn _ OF2 X 8r3 legh 20 g0 3¢ ph
fote = Sode V7O = ——— (r's®f + r’sdf5 + r3sof) (33)

for triangle “cde” in Fig. 3. It is not necessary to write all addendums in the right part
Eq. (32) explicitly. Instead, a simple algorithm can be used for compm[ﬁg}( according
to Egs. (32) and (33)
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i+1,j+1,k+1

i+1,j,k+1 i+1,j+1,k

ij,k i,jtl,k

FIG. 3. 3D cell of typel Il mesh including 24 tetrahedral elementsfe nodes).

1 PhiType ©(I, J, K), O, J, K), P4, §P;, 83, fege; % PhiType andVector are

2 Vector r(l,J,K),8ry,8rp, 8rs,rtr2,r3; % new data types developed by user
3 Real V(l, J, K), Vaped; % Intrinsic type for real values
4 doi=1ltol;doj=1toJ;dok=1toK; % Cycles over all nodes
5 ri jx < mesh generator;

6 ®; j k < initial conditions;

7 enddg enddg enddg

8

9

dot= 0 stepst to tinisn; % Cycle by time
doi=1tol;doj=1to J;dok=1toK; % Cycles over all nodes

10 b jk:=0; % “0” is PhiType zero
11 enddg enddog enddg
12 doi=1tol-1;doj=1to J-1;dok=1to K-1; % Cycles over all cells
13 don=1to 12; % Cycle over all tetrahedra in this cell
14 .. % Cyclic permutation of indices in the cell and definition
15 . % indices of vertices “a” and “b” in the tetrahedron “abcd”
16 Or1 = Tipy joko — Vigjaskas OT2:= .. 5 8F3:=...; % Eq. (4)
17 8P =D jyk — Pinjukas 0P2:= ..., 8P3:= .. % Eq. (8)
18 Vabed:=38r1 - (8r2 x 8r3)/6 % Volume of tetrahedron “abcd”
19 rt:=(8r x 8ra)/(6Vapcd); I’ ardi= % Eq. (9)
20 fege:= (812 x 8r3)/2- (r1 © 5c1>1 +120 3q>2 +130 803, % Eq. (33)
21 O, juke = Oty juka + fede % fcdeis joining to O, j, k, @aNAO;, j,
22 Oy, ik = Oip.joko — fedes % (taking into account the sign)
23 Vi iake = Via,jaka T Vabcd/2; % Vabcd iS contributed to
24 Vin.ivko -= Vip, jo.ko + Vabed/2; % corresponding nodal volumes
25 enddo enddg
26 doi=1tol;doj=1toJ;dok=1toK; % Cycles over all nodes

27 CDi,j,kZZ <I>i,,-,k+6t*®i,j,k/\/i,j,k % Eq. (32). For boundary nodé&,—,k:: BC
28 enddog enddg enddg
29 enddog
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Using variables of new types (lines 1, 2) allows the conservation of the syntax of vec
difference schemes in computer programming (lines 16-22, 27). For example, the t
Vector (line 2) was developed for manipulations with 3D vector variables. As a resu
the program size decreased and simplified in comparison with the traditional “compone
program, where huge similar expressions for all dimensions such as Eq. (29) are nece:
to the programming. Vector technology also allows a decrease in syntax errors and ez
modification of algorithms and program codes.

To solve governing Eq. (31) with different types®f(scalar, vector, or tensor) we have
to definePhiType (line 1) asReal, Vector or Tensor, respectively. Wherd is a tensor
variable (for example), the object-oriented programming allows the introduction of o
array of tensor type fod. In traditional programming we must introduce nine arrays fol
any components of tensdr, correspondingly.

The remainder “numerical” part of computer program (beginning from line 2) is re
usable. Itis easy to construct an absolutely implicit or ADI [11] numerical scheme in vect
form.

Other examples of approximation in vector form are here.

1. The scheme for conservation law of mass in any tetrahedral element of 3D mesh
be written as

=—pr™. svp.

Explicit/implicit properties of right-hand side are not discussed here.
2. When fluid flows through Eulerian mesh, the conservation law of momentum includ
the convective term

7{ (ds- vd), (34)
S

where® is convected substance. An approximation of the surface integral Eq. (34) for t
same typical part “cde” of the control surfagg, « can be obtained as in upwind difference
schemes [11]

a-+|a a—|a
(dS-VCI))Z%CDi,j,k—i- @l

Diy1jk
Stde

where

_O0ra X 8rg Vijk+ Vitdjk
2 2 '

3. The next scheme within a tetrahedral element
T =—pl + {hi@rmrd) - (r§éra) + ha[(srirf) - (rg(Srq)]z}

can be written for constitutive relationship Eq. (2). Hefe= r™|;—o.
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6. PRACTICAL “PROOF” OF THE PERFORMANCE OF THE VECTOR
FORM OF DISCRETIZATION

As a provisional step the results of simulation of hyperelastic 3D pyramid twisting a
shown in Fig. 4. Governing equations included the momentum equation and the rheoloc
model Eq. (2), where

AW AW AW 1
h1=2<—+|1—>, h2=—28—|, I, = trB, Igzé(trzB—trBZ),
2

andW is the strain energy function defined as follows [19]:

W = Cyo(l1 = 3) + Cor(l2 = 3) + Cy1(l1 = 3) (12— 3)
+ Cao(l1 — 3)? + Cao(l1 — 3%, (35)
The material propertie8yy, . . ., C3p in EQ. (35) were taken similar to natural rubber. The

volume of each tetrahedron element of 3D Lagrangian mesh (Fig. 3) was conserved. .
numerical method we used a combination of artificial compressibility and ADI methods [1

FIG. 4. 3D hyperelastic pyramid: (a) undeformed state; (c) after twisting aroundkaig 2r; (b) and (d)
2D cross-sections of the pyramid normal to directigrat x; = 0.1, 0.3, 0.5, 0.7, 0.9 for (a) and (c), respectively.
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b)

FIG.5. 4D hyperelastic pyramid: (a) undeformed state and (c) after twisting arouns,axis?z, axisx, on
27 and axisx; on 27 can't be shown (compared with Fig. 4); (b) and (d) 3D cross-sections of the pyramid norm
to directionx, atx, = 0.1, 0.3, 0.5, 0.7, 0.9 for (a) and (c) states, respectively.

The nondimensional size of the pyramid in rectangular coordinaies,, x3) was 10
in direction x;; the square bottom (at; = 0) and top (atx, = 10) were £ and 0257,
respectively. The bottom was fixed; the top was twisted initially (before iteration begin
around axes; by 27 and fixed; and other surfaces were free. The rheological models a
algorithms were the same as before. Simulations of undeformed, and twisted 3D pyran
and their cross sections normal to axgsare shown in Fig. 4.

Increasing problem dimensions, increasing complexity of the geometry of simulatiol
or going from linear to nonlinear problem usually increase programming efforts. So fo
“proof” of vector technique performance we assumed that the governing equations c
serve invariant vector form in nD Cartesian space and generalized the problem of pyra
twisting for 4D case. The nondimensional size of the 4D pyramid in rectangular coor
nates(Xi, Xz, X3, X4) was 10 along directior,; the cubical bottom (at; = 0) and top (at
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x1 = 10) were # and 025°, respectively. The bottom was fixed; the top was initially twistec
around each axisq, X2, andxs, by 27 and fixed; and other 3D surfaces of the 4D pyramic
were free. A Lagrangian mesh withx99 x 9 x 85 4D cells of typdll was used. Any cell
of mesh consisted of 192 4D tetrahedra. Of course we can’t draw the 4D solid explici
so subitems (a) and (c) are absent in Fig. 5 in contrast to Fig. 4. But the simulation allc
the obtainment any 3D cross section of 4D pyramid. Some cross sections normalxg axi
before and after twisting are shown in Fig. 5.

The main performance of the vector technique in this example is that the listing
the “numerical” part of the computer program for 4D simulation does not increase me
times but less than 40% in comparison with the 3D case (based on vector technique a
Approximately 70% of the 3D program was reusable.

7. CONCLUSIONS

The vector form of approximation and computer programming does not replace
projection forms. These two forms can complement each other (in the same way that For
does not replace an assembler). The vector form of approximation and programming
be applied with great effect in numerical simulation of problems with both “symmetrica
and “degenerated” governing equations, such as plate and rod space bending or fluid
flows.
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